Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nat Chem Biol ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2274727

ABSTRACT

Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.

2.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2246801

ABSTRACT

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Antibodies, Viral
3.
Proc Natl Acad Sci U S A ; 119(39): e2204624119, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2017031

ABSTRACT

The high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a primary driver of the COVID-19 pandemic. While existing interventions prevent severe disease, they exhibit mixed efficacy in preventing transmission, presumably due to their limited antiviral effects in the respiratory mucosa, whereas interventions targeting the sites of viral replication might more effectively limit respiratory virus transmission. Recently, intranasally administered RNA-based therapeutic interfering particles (TIPs) were reported to suppress SARS-CoV-2 replication, exhibit a high barrier to resistance, and prevent serious disease in hamsters. Since TIPs intrinsically target the tissues with the highest viral replication burden (i.e., respiratory tissues for SARS-CoV-2), we tested the potential of TIP intervention to reduce SARS-CoV-2 shedding. Here, we report that a single, postexposure TIP dose lowers SARS-CoV-2 nasal shedding, and at 5 days postinfection, infectious virus shed is below detection limits in 4 out of 5 infected animals. Furthermore, TIPs reduce shedding of Delta variant or WA-1 from infected to uninfected hamsters. Cohoused "contact" animals exposed to infected, TIP-treated animals exhibited significantly lower viral loads, reduced inflammatory cytokines, no severe lung pathology, and shortened shedding duration compared to animals cohoused with untreated infected animals. TIPs may represent an effective countermeasure to limit SARS-CoV-2 transmission.


Subject(s)
COVID-19 , RNA, Messenger , RNA, Small Interfering , SARS-CoV-2 , Virus Shedding , Animals , COVID-19/therapy , COVID-19/transmission , Cricetinae , RNA, Messenger/administration & dosage , RNA, Small Interfering/administration & dosage , SARS-CoV-2/genetics , SARS-CoV-2/physiology
4.
Sci Transl Med ; 14(657): eabl9605, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1986328

ABSTRACT

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron. This result contrasts with human infection or many two-shot vaccination protocols where responses were typically more SARS-CoV-2 specific and where VOCs were less well neutralized. Structural studies showed that cloned macaque neutralizing antibodies, particularly using a given heavy chain germline gene, recognized a relatively conserved region proximal to the angiotensin converting enzyme 2 receptor binding site (RBS), whereas many frequently elicited human neutralizing antibodies targeted more variable epitopes overlapping the RBS. B cell repertoire differences between humans and macaques appeared to influence the vaccine response. The macaque neutralizing antibodies identified a pan-SARS-related virus epitope region less well targeted by human antibodies that could be exploited in rational vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Humans , Macaca mulatta , Spike Glycoprotein, Coronavirus
5.
Nat Immunol ; 23(6): 960-970, 2022 06.
Article in English | MEDLINE | ID: covidwho-1873528

ABSTRACT

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus
6.
Sci Transl Med ; 14(637): eabi9215, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1673344

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human ß-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral , COVID-19/immunology , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
7.
Cell ; 184(25): 6022-6036.e18, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1536466

ABSTRACT

Viral-deletion mutants that conditionally replicate and inhibit the wild-type virus (i.e., defective interfering particles, DIPs) have long been proposed as single-administration interventions with high genetic barriers to resistance. However, theories predict that robust, therapeutic DIPs (i.e., therapeutic interfering particles, TIPs) must conditionally spread between cells with R0 >1. Here, we report engineering of TIPs that conditionally replicate with SARS-CoV-2, exhibit R0 >1, and inhibit viral replication 10- to 100-fold. Inhibition occurs via competition for viral replication machinery, and a single administration of TIP RNA inhibits SARS-CoV-2 sustainably in continuous cultures. Strikingly, TIPs maintain efficacy against neutralization-resistant variants (e.g., B.1.351). In hamsters, both prophylactic and therapeutic intranasal administration of lipid-nanoparticle TIPs durably suppressed SARS-CoV-2 by 100-fold in the lungs, reduced pro-inflammatory cytokine expression, and prevented severe pulmonary edema. These data provide proof of concept for a class of single-administration antivirals that may circumvent current requirements to continually update medical countermeasures against new variants.


Subject(s)
COVID-19 Drug Treatment , Defective Interfering Viruses/metabolism , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/metabolism , Cell Line , Chlorocebus aethiops , Culture Media, Conditioned/pharmacology , Defective Interfering Viruses/pathogenicity , Drug Delivery Systems/methods , Epithelial Cells , Humans , Male , Mesocricetus , Nanoparticles/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Vero Cells
8.
Nat Commun ; 12(1): 6055, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1475294

ABSTRACT

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/administration & dosage , Indoles/administration & dosage , Leucine/administration & dosage , Pyrrolidinones/administration & dosage , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Alanine/administration & dosage , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Animals , COVID-19/virology , Chlorocebus aethiops , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/enzymology , Coronavirus Protease Inhibitors/adverse effects , Coronavirus Protease Inhibitors/pharmacokinetics , Disease Models, Animal , Drug Design , Drug Synergism , Drug Therapy, Combination , HeLa Cells , Humans , Indoles/adverse effects , Indoles/pharmacokinetics , Infusions, Intravenous , Leucine/adverse effects , Leucine/pharmacokinetics , Mice , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Vero Cells
9.
Sci Transl Med ; 13(616): eabj5413, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1406601

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern threatens the efficacy of existing vaccines and therapeutic antibodies and underscores the need for additional antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells collected from patients with coronavirus disease 2019. The three most potent antibodies targeted distinct regions of the receptor binding domain (RBD), and all three neutralized the SARS-CoV-2 Alpha and Beta variants. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the angiotensin-converting enzyme 2 receptor, and has limited contact with key variant residues K417, E484, and N501. We designed bispecific antibodies by combining nonoverlapping specificities and identified five bispecific antibodies that inhibit SARS-CoV-2 infection at concentrations of less than 1 ng/ml. Through a distinct mode of action, three bispecific antibodies cross-linked adjacent spike proteins using dual N-terminal domain­RBD specificities. One bispecific antibody was greater than 100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a dose of 2.5 mg/kg. Two bispecific antibodies in our panel comparably neutralized the Alpha, Beta, Gamma, and Delta variants and wild-type virus. Furthermore, a bispecific antibody that neutralized the Beta variant protected hamsters against SARS-CoV-2 expressing the E484K mutation. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.


Subject(s)
Antibodies, Bispecific , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Humans , SARS-CoV-2
10.
Elife ; 102021 08 13.
Article in English | MEDLINE | ID: covidwho-1380072

ABSTRACT

Background: SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods: We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results: Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions: Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding: This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).


Subject(s)
Adult Stem Cells , COVID-19 , Lung/pathology , Models, Biological , Organoids , Adult Stem Cells/virology , COVID-19/pathology , COVID-19/virology , Female , Humans , Lung/cytology , Lung/virology , Male , Middle Aged , Organoids/virology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/virology , Respiratory Mucosa/cytology , Respiratory Mucosa/virology
11.
ACS Infect Dis ; 7(8): 2229-2237, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1337099

ABSTRACT

SARS-CoV-2 virus has recently given rise to the current COVID-19 pandemic where infected individuals can range from being asymptomatic, yet highly contagious, to dying from acute respiratory distress syndrome. Although the world has mobilized to create antiviral vaccines and therapeutics to combat the scourge, their long-term efficacy remains in question especially with the emergence of new variants. In this work, we exploit a class of compounds that has previously shown success against various viruses. A salicylanilide library was first screened in a SARS-CoV-2 activity assay in Vero cells. The most efficacious derivative was further evaluated in a prophylactic mouse model of SARS-CoV-2 infection unveiling a salicylanilide that can reduce viral loads, modulate key cytokines, and mitigate severe weight loss involved in COVID-19 infections. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and a previously established favorable pharmacokinetic profile for the lead salicylanilide renders salicylanilides in general as promising therapeutics for COVID-19.


Subject(s)
COVID-19 , Pandemics , Animals , Chlorocebus aethiops , Cytokines , Humans , Mice , Rodentia , SARS-CoV-2 , Salicylanilides , Vero Cells
12.
EBioMedicine ; 68: 103390, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1267655

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (Covid-19) continues to challenge the limits of our knowledge and our healthcare system. Here we sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. METHOD: Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. An AI-based approach was used to explore the utility of the signature in navigating the uncharted territory of Covid-19, setting therapeutic goals, and finding therapeutic solutions. FINDINGS: The 166-gene signature was surprisingly conserved across all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determine severity/fatality. Precise therapeutic goals could be formulated; these goals were met in high-dose SARS-CoV-2-challenged hamsters using either neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine prognosticated disease severity. INTERPRETATION: The ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. FUNDING: This work was supported by the National Institutes for Health (NIH) [grants CA151673 and GM138385 (to DS) and AI141630 (to P.G), DK107585-05S1 (SD) and AI155696 (to P.G, D.S and S.D), U19-AI142742 (to S. C, CCHI: Cooperative Centers for Human Immunology)]; Research Grants Program Office (RGPO) from the University of California Office of the President (UCOP) (R00RG2628 & R00RG2642 to P.G, D.S and S.D); the UC San Diego Sanford Stem Cell Clinical Center (to P.G, D.S and S.D); LJI Institutional Funds (to S.C); the VA San Diego Healthcare System Institutional funds (to L.C.A). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. ONE SENTENCE SUMMARY: The host immune response in COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/administration & dosage , COVID-19/genetics , Gene Expression Profiling/methods , Interleukin-15/genetics , Receptors, Interleukin-15/genetics , Virus Diseases/genetics , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , Artificial Intelligence , Autopsy , COVID-19/immunology , Cricetinae , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Databases, Genetic , Disease Models, Animal , Gene Regulatory Networks/drug effects , Genetic Markers/drug effects , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Interleukin-15/blood , Lung/immunology , Mesocricetus , Pandemics , Receptors, Interleukin-15/blood , Virus Diseases/immunology , COVID-19 Drug Treatment
13.
Nat Commun ; 12(1): 3309, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1260940

ABSTRACT

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning/methods , Pandemics , SARS-CoV-2 , Animals , COVID-19/prevention & control , COVID-19/virology , Cell Line , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Databases, Pharmaceutical , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , HeLa Cells , High-Throughput Screening Assays/methods , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Mesocricetus , Nelfinavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
14.
Nat Commun ; 12(1): 2938, 2021 05 19.
Article in English | MEDLINE | ID: covidwho-1236086

ABSTRACT

Pre-existing immunity to seasonal endemic coronaviruses could have profound consequences for antibody responses to SARS-CoV-2, induced from natural infection or vaccination. A first step to establish whether pre-existing responses can impact SARS-CoV-2 infection is to understand the nature and extent of cross-reactivity in humans to coronaviruses. Here we compare serum antibody and memory B cell responses to coronavirus spike proteins from pre-pandemic and SARS-CoV-2 convalescent donors using binding and functional assays. We show weak evidence of pre-existing SARS-CoV-2 cross-reactive serum antibodies in pre-pandemic donors. However, we find evidence of pre-existing cross-reactive memory B cells that are activated during SARS-CoV-2 infection. Monoclonal antibodies show varying degrees of cross-reactivity with betacoronaviruses, including SARS-CoV-1 and endemic coronaviruses. We identify one cross-reactive neutralizing antibody specific to the S2 subunit of the S protein. Our results suggest that pre-existing immunity to endemic coronaviruses should be considered in evaluating antibody responses to SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Cross Reactions/immunology , Female , Humans , Immunologic Memory/immunology , Male
15.
Cell Rep ; 35(1): 108940, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1157178

ABSTRACT

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , DNA Damage , Isoxazoles/pharmacology , Pyrazines/pharmacology , SARS-CoV-2/physiology , Virus Replication/drug effects , A549 Cells , Animals , COVID-19/metabolism , COVID-19/pathology , Chlorocebus aethiops , Drug Evaluation, Preclinical , HEK293 Cells , HeLa Cells , Humans , MAP Kinase Signaling System/drug effects , Middle East Respiratory Syndrome Coronavirus/metabolism , Vero Cells
16.
bioRxiv ; 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-807603

ABSTRACT

Pre-existing immune responses to seasonal endemic coronaviruses could have profound consequences for antibody responses to SARS-CoV-2, either induced in natural infection or through vaccination. Such consequences are well established in the influenza and flavivirus fields. A first step to establish whether pre-existing responses can impact SARS-CoV-2 infection is to understand the nature and extent of cross-reactivity in humans to coronaviruses. We compared serum antibody and memory B cell responses to coronavirus spike (S) proteins from pre-pandemic and SARS-CoV-2 convalescent donors using a series of binding and functional assays. We found weak evidence of pre-existing SARS-CoV-2 cross-reactive serum antibodies in pre-pandemic donors. However, we found stronger evidence of pre-existing cross-reactive memory B cells that were activated on SARS-CoV-2 infection. Monoclonal antibodies (mAbs) isolated from the donors showed varying degrees of cross-reactivity with betacoronaviruses, including SARS and endemic coronaviruses. None of the cross-reactive mAbs were neutralizing except for one that targeted the S2 subunit of the S protein. The results suggest that pre-existing immunity to endemic coronaviruses should be considered in evaluating antibody responses to SARS-CoV-2.

17.
bioRxiv ; 2021 Apr 13.
Article in English | MEDLINE | ID: covidwho-807000

ABSTRACT

We sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. Surprisingly, this 166-gene signature was conserved in all vi ral p andemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determines severity/fatality. Precise therapeutic goals were formulated and subsequently validated in high-dose SARS-CoV-2-challenged hamsters using neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine tracked with disease severity. Thus, the ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. ONE SENTENCE SUMMARY: The host immune response in COVID-19. PANEL RESEARCH IN CONTEXT: Evidence before this study: The SARS-CoV-2 pandemic has inspired many groups to find innovative methodologies that can help us understand the host immune response to the virus; unchecked proportions of such immune response have been implicated in fatality. We searched GEO and ArrayExpress that provided many publicly available gene expression data that objectively measure the host immune response in diverse conditions. However, challenges remain in identifying a set of host response events that are common to every condition. There are no studies that provide a reproducible assessment of prognosticators of disease severity, the host response, and therapeutic goals. Consequently, therapeutic trials for COVID-19 have seen many more 'misses' than 'hits'. This work used multiple (> 45,000) gene expression datasets from GEO and ArrayExpress and analyzed them using an unbiased computational approach that relies upon fundamentals of gene expression patterns and mathematical precision when assessing them.Added value of this study: This work identifies a signature that is surprisingly conserved in all viral pandemics, including Covid-19, inspiring the nomenclature ViP-signature. A subset of 20-genes classified disease severity in respiratory pandemics. The ViP signatures pinpointed the nature and source of the 'cytokine storm' mounted by the host. They also helped formulate precise therapeutic goals and rationalized the repurposing of FDA-approved drugs.Implications of all the available evidence: The ViP signatures provide a quantitative and qualitative framework for assessing the immune response in viral pandemics when creating pre-clinical models; they serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.

18.
Science ; 369(6506): 956-963, 2020 08 21.
Article in English | MEDLINE | ID: covidwho-599034

ABSTRACT

Countermeasures to prevent and treat coronavirus disease 2019 (COVID-19) are a global health priority. We enrolled a cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-recovered participants, developed neutralization assays to investigate antibody responses, adapted our high-throughput antibody generation pipeline to rapidly screen more than 1800 antibodies, and established an animal model to test protection. We isolated potent neutralizing antibodies (nAbs) to two epitopes on the receptor binding domain (RBD) and to distinct non-RBD epitopes on the spike (S) protein. As indicated by maintained weight and low lung viral titers in treated animals, the passive transfer of a nAb provides protection against disease in high-dose SARS-CoV-2 challenge in Syrian hamsters. The study suggests a role for nAbs in prophylaxis, and potentially therapy, of COVID-19. The nAbs also define protective epitopes to guide vaccine design.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Adult , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , Antibody Affinity , Antibody Specificity , Betacoronavirus/physiology , Binding Sites , COVID-19 , Cell Line , Coronavirus Infections/therapy , Coronavirus Infections/virology , Disease Models, Animal , Epitopes , Female , Humans , Immunization, Passive , Lung/virology , Male , Mesocricetus , Middle Aged , Neutralization Tests , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Load , Virus Replication , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL